Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu, ${ }^{\text {a * }}$ Yong-Shan<br>Lin, ${ }^{\text {a }}$ Fan-Jin Meng, ${ }^{\text {a }}$ Ying Zou ${ }^{\text {a }}$ and Da-Qi Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.041$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(N-(2-(2-hydroxyethylamino)ethyl)salicylideneimine)cobalt(III) chloride

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \mathrm{Cl}$, the $\mathrm{Co}^{\mathrm{III}}$ atom is six-coordinated by four N atoms and two O atoms from two Schiff base ligands, and is in a distorted octahedral geometry. The alcohol O atoms and the amine N atoms in the Schiff base and the chloride anions contribute to the formation of intermolecular hydrogen bonds.

## Comment

Recently we reported (Zhu et al., 2003) a cobalt(III) nitrate complex with a Schiff base $L$, where $L$ is bis( N -(2-(2hydroxyethylamino)ethyl)salicylideneimine). As a subsequent part of our research on this series, we now report the crystal structure of the title compound, (I), which has a similar cation structure to the previously reported complex.

(I)

The title compound consists of a $\left[\mathrm{Co} L_{2}\right]^{+}$cation and a chloride anion. The cobalt(III) atom in the cation is in a distorted octahedral geometry, being coordinated by four N atoms and two phenoxy O atoms from two chelating Schiff base ligands $(L)$. The average $\mathrm{Co}($ III $)-\mathrm{N}$ (imine) bond length is 1.904 (3) $\AA$ and the average $\mathrm{Co}(\mathrm{III})-\mathrm{N}($ amine $)$ contact is 2.010 (3) $\AA$, both of which are slightly shorter than the corresponding bonds in $\left[\mathrm{Co} L_{2}\right] \mathrm{NO}_{3}$ ( $L$ is the same Schiff base ligand as in the title complex) (Zhu et al., 2003). The mean $\mathrm{Co}-\mathrm{O}$ distance is $1.889(3) \AA$, also shorter than that [1.904 (4) $\AA$ ] in the $\left[\mathrm{Co} L_{2}\right] \mathrm{NO}_{3}$ complex. The dihedral angle between the two aromatic rings in the cation is $77.2(2)^{\circ}$.

All the alcohol O atoms and all the amine N atoms in the Schiff base, together with the chloride atoms, contribute to the formation of intermolecular hydrogen bonds $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{1}{ }^{\mathrm{i}}$, $\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{Cl} 1^{\mathrm{i}}, \mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$ and $\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$ (Fig. 2; for symmetry codes, see Table 1).

## Experimental

Salicylaldehyde, 2-hydroxylaminoethylamine, and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were available commercially and were used without further purification. Equimolar salicylaldehyde ( $1 \mathrm{mmol}, 122 \mathrm{mg}$ ) and 2-hydroxylaminoethylamine ( $1 \mathrm{mmol}, 104 \mathrm{mg}$ ) were dissolved in anhydrous ethanol $(5 \mathrm{ml})$. The mixture was stirred to give a clear solution of $L$, where $L$ is N -(2-(2-hydroxyethylamino)ethyl)salicylideneimine. To this solu-

Received 6 August 2003
Accepted 4 September 2003
Online 11 September 2003
tion was added $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 238 \mathrm{mg})$ in anhydrous ethanol ( 5 ml ). After keeping the resulting solution in air to evaporate about half of the solvent, dark red prisms of the title compound were formed. The crystals were isolated, washed with ethanol three times and dried in a vacuum desiccator using silica gel (Yield $55 \%$ ). Elemental analysis: found: C, $51.70 ; \mathrm{H}, 5.82 ; \mathrm{N}, 10.92 \%$; calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClCoN}_{4} \mathrm{O}_{4}$ : C, 51.93; H, 5.94; N, $11.01 \%$.

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{Cl}$
$M_{r}=508.88$
Monoclinic, $P 2_{1} / n$
$a=9.802(5) \AA$
$b=24.879(13) \AA$
$c=10.425(6) \AA$
$\beta=115.849(7)^{\circ}$
$V=2288(2) \AA^{3}$
$Z=4$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.780, T_{\text {max }}=0.876$
12017 measured reflections
$D_{x}=1.477 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2737
$\quad$ reflections
$\theta=2.3-22.8^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Prism, dark red
$0.29 \times 0.18 \times 0.15 \mathrm{~mm}$

4049 independent reflections 2768 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 11$
$k=-29 \rightarrow 25$
$l=-12 \rightarrow 12$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0578 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{\AA^{-3}}$

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.113$
$S=0.97$
4049 reflections
289 parameters


CI(1)
(117)

Figure 1
The structure of the title compound (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
Crystal packing of (I), showing the hydrogen-bonded interactions as dashed lines.

## References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Zhu, H.-L., Liu, X.-Y., Wang, Y.-F. \& Wang, D.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 257-258.

